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Diffusion in Porous Materials Above the Percolation Threshold
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The diffusion of water-solubie solutes in water-soaked porous media was studied by following the
release of benzoic acid from poly(vinyl stearate) matrices. The results were analyzed using a pseudo-
steady-state diffusion model coupled with the fundamental concepts of percolation theory. The results
of the study indicated that the relationship between the bulk diffusion coefficient of benzoic acid in the
polymer matrix and the porosity was well described by percolation scaling laws. A very low perco-
lation threshold (0.07) was experimentally observed for this system.
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INTRODUCTION

Diffusional release of biologically active molecules from
porous polymeric systems is an important and commonly
used method of achieving controlled release. There are sev-
eral reviews in the literature concerning drug delivery sys-
tems that contain discussions of release from porous matri-
ces (1-4). Pseudo-steady-state (5) and exact solutions (6,7)
for diffusional release of drugs from monolithic systems have
been developed and experimentally tested. Although the
mathematical models presented in the literature have been
successful in modeling the time course of drug release, the
predictive application of these models requires knowledge of
the effective diffusion coefficient. Percolation theory is a
mathematical tool that allows the prediction of morphologi-
cal and transport properties for heterogeneous materials or
porous systems by the use of simple scaling laws. Our re-
search is concerned with diffusional release from porous,
polymeric monolithic slabs where the drug load exceeds its
solubility limit. The purpose of this research is to apply per-
colation theory to the general problem of diffusion in porous
materials and to test the mathematical models developed
against experimental diffusion coefficients of benzoic acid in
a porous polymer matrix.

In the original work by Higuchi (5,8), a pseudo-
steady-state solution was described for the release of a wa-
ter-soluble drug from solid particles of the drug randomly
dispersed in a solid matrix. It has been shown (1) for mech-
anisms involving diffusion retardation, as illustrated by
Higuchi’s system, the effective diffusion coefficient within
the pores can be correctly defined as shown in Eq. (1):
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where D, is the aqueous diffusion coefficient and 7 is the
tortuosity. The tortuosity factor in Eq. (1) is an empirical
correction factor that is obtained from curve fitting and has
been shown to have no physical meaning (1). A more satis-
factory description of the effective diffusion coefficient is
required before the relationship between pore structure and
release rates in porous systems is understood.

Early theoretical attempts at relating the rate of diffu-
sional release from polymeric matrices to pore structure
were made by T. Higuchi and W. Higuchi (9). A two-phase
model, where the pore structure was pictured to consist of
an assembly of small channels connected to large pores, was
developed and tested by Schwartz et al. (10). This model
was successful in predicting diffusion coefficients as a func-
tion of drug load. The relationship between pore structure
and transport has recently been explored for systems with
large pores interconnected by smaller throats (11-13).

While the above-cited work regarding the mechanism of
diffusion through porous polymeric matrices has made sig-
nificant contributions in relating pore structure and porosity
to diffusion, no simple general model has resulted. It is
shown here that percolation theory can be used to describe
and predict quantitatively transport properties in porous
polymeric materials as a function of porosity by employing
scaling laws. These scaling laws take the form
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where Dy, is the steady-state bulk diffusion coefficient of the
solute through the matrix, @ is the porosity, @, is the per-
colation threshold, and p. is a universal scaling constant. It is

shown later that the percolation threshold is a function
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of pore structure and that p is a universal constant depen-
dent only on the spatial dimension. The bulk diffusion coef-
ficient, Dy, is not the same as the effective diffusion coeffi-
cient, D, defined earlier [Eq. (1)]; however, a relationship
does exist between the two coefficients.

The concepts of percolation theory are directly incor-
porated into a quantitative transport model that describes
the release profiles of water-soluble solutes from monolithic
polymeric devices, where drug load exceeds drug solubility.
We have also experimentally tested the application of per-
colation theory to the diffusional release of water-soluble
solutes from porous polymeric matrices using a benzoic
acid/poly(vinyl stearate) model system.

THEORETICAL BASIS

Percolation Theory

An understanding of the diffusional transport of solute
through porous systems requires consideration of the geo-
metrical and topological characteristics of the microenviron-
ment within the porous material. Through the use of perco-
lation theory (14-16), a morphological description of disor-
dered media can be accomplished as follows. If a porous
material is subdivided into many small spaces (or sites) and
one labels the occupant of each subdivision as conducting
(water-filled pores within the polymeric matrix) or noncon-
ducting (solid particles of the polymer), it is then possible to
use percolation theory to describe the important transport
and geometrical properties of the material.

For transport to take place through the matrix (or lat-
tice), a continuous pathway of conducting sites (site perco-
lation) that spans the matrix must be formed. At low poros-
ities there will be so few conducting sites that a sample-
spanning pathway will not exist. The porosity at which
sample-spanning pore networks just cease to exist is called
the critical percolation threshold (@.). As the concentration
of pores (sites) is increased, sample-spanning clusters of
conducting sites will form at (. and transport across the
matrix will become possible. For a porous material with a
porosity that is larger than the percolation threshold, a frac-
tion of the pore space will be connected to the outside en-
vironment through sample-spanning networks and the re-
mainder of the pore space will exist as isolated pockets. The
volume fraction of isolated pores is designated @, and the
fraction of space occupied by sample-spanning pore net-
works is designated the volume fraction accessible (9%).
Thus, the porosity of a material can be divided into the sum
shown in Eq. (4):

g=0+@ @

One of the properties of @ is that it obeys the scaling
law:

P @ -0 D>0. %)

where B is a universal constant (3 = 0.3-0.4 for three-
dimensional lattices) (14,16,17). The importance of these
concepts to the release of drug from polymeric matrices is
that the volume fraction accessible represents the fraction of
pore space available to the surrounding environment and is,
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therefore, related to the fraction of drug loaded into the ma-
trix that will eventually be released.

Scaling Laws for Conductivity and Definition of
Diffusion Coefficients

The application of percolation theory to diffusional
problems has its origins in the earlier application of this the-
ory to the effective conductivity of composite materials. If
we imagine a composite material composed of conducting
sites (copper particles) and nonconducting sites (particles of
insulating material), it is easy to see that when a voltage is
applied across the material, current flows only between
those sites occupied by the copper particles. For current to
flow across the composite material, sample-spanning clus-
ters of copper particles must exist. Below the critical perco-
lation threshold the composite acts as an insulator, and
above it acts as a conductor. It might seem that the relative
conductivity, 3 (the conductivity of the composite divided
by the conductivity of copper), would simply follow the scal-
ing law shown in Eq. (5). It has been experimentally deter-
mined, however, that the scaling law for volume fraction
accessible greatly overestimates the magnitude of the rela-
tive conductivity. This can be explained by the fact that the
volume fraction of conducting particles accessible to current
flow is not a good descriptor of the effectiveness of current
transport. A typical sample-spanning cluster of copper par-
ticles would contain numerous dead-end branches that
would not contribute to current flow but would be accessi-
ble. Thus, a different scaling law is defined for conductivity
in composite materials and is shown below in Eq. (6):
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where @ is the volume fraction conducting. The scaling law
shown in Eq. (6) has been successfully applied to several
conductivity problems in heterogeneous materials (18-20).
In addition, theoretical networks (tessellations) have been
studied using various numerical techniques and the relation-
ship between the conductivity and the volume fraction con-
ducting has been established (21,22).

The connection between diffusion and electrical con-
duction in heterogeneous materials is well established and
there is a direct parallel between these apparently different
processes (14,23). Straley has shown that the steady-state
diffusion problem is analogous to bulk electrical conductiv-
ity. Thus, the bulk diffusion coefficient (Dg) of a solute
through a porous material (percolating lattice) at steady state
is defined as shown in Eq. (7). The same scaling law for
conductivity [Eq. (6)] can be used to relate diffusion with
porosity [Egs. (2) and (3)]. It should be noted that the steady-
state flux (Jg) described in Eq. (7) is the flux through a unit
surface area of the bulk material and is not the flux of solute
through a pore. The analogy between conductivity and
steady-state diffusion allows the application of the extensive
theoretical and experimental results concerning conductivity
in heterogeneous materials to problems of diffusion in po-
rous systems. Thus, we define all diffusion problems in this
work in terms of the bulk diffusion coefficient, Dyg.
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For non-steady-state analysis, a diffusion coefficient de-
scribing diffusion within the pore must be used. The problem
of non-steady-state release from monolithic devices has been
correctly defined in terms of diffusion within the pore (1).
The diffusion coefficient (D,) defined by Siegel describes
transport of solute in all pore spaces (both accessible and
isolated). This definition of the diffusion coefficient will be
valid for non-steady-state transport when the volume frac-
tion isolated is small. The steady-state flux through a com-
posite material, using D,, is shown in Eq. (8):

C

d
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A diffusion coefficient (D, ') can also be defined for diffusion
within sample-spanning pores only. This diffusion coeffi-
cient, D.’, is useful for the definition of non-steady-state
problems where there is a significant amount of the pore
space that is isolated. The steady-state flux using D, is given
by Eq. (9):

dc

Jg = —D.'@* I ®

As is obvious from Egs. (7), (8), and (9), there is a simple
steady-state relationship between these three different diffu-
sion coefficients. This relationship has been discussed by
Straley (23) and Stauffer (14). We can define the bulk diffu-
sion coefficient in terms of the two pore diffusion coeffi-
cients as shown in Eq. (10). For a steady-state diffusion
problem, the use of any one of the three different definitions
is correct, as long as the proper flux equation is applied. For
transient diffusion problems, however, selection of the
proper diffusion coefficient is crucial.
Dy =D@B =D& 10)
With these basic definitions of diffusion coefficients in
place, a dimensionless representation can be defined equiv-
alent to relative conductivity. The dimensionless form for
steady-state diffusion through a porous system is defined as
the relative diffusivity, D, and is shown in Eq. (11). It should
be noted that the relative diffusivity is equivalent to relative
conductivity, and thus the dimensionless parameter D can be
applied to either steady-state diffusion problems in porous
materials or conductivity problems in heterogeneous mate-
rials.
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The value of D falls to zero as porosity approaches the per-
colation threshold (@,) from above and reaches a maximum
of one as porosity approaches one from below. For values of
porosity below the percolation threshold there are no sam-
ple-spanning pathways, and thus the bulk diffusion coeffi-
cient of a solute in such a material will be zero. The relative
diffusivity is known to obey the conductivity scaling law
[Eq. (6)] and was introduced earlier in Eqs. (2) and (3). The
universal conductivity constant (p) is thought to be approx-
imately 1.7 to 2.0 in three dimensions (17,24).
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Pseudo-Steady-State Solution

It is well established that for the release of many water-
soluble solutes from polymeric matrices, the mechanism of
release involves diffusion through water-filled pores within
the matrix. The pore structure within a compressed compos-
ite of water-soluble drug and hydrophobic polymer is gener-
ally derived from the dissolution process associated with the
drug and the intrinsic pore spaces associated with the ma-
trix. The volume fraction of benzoic acid is defined as @,
the inherent porosity of the matrix (porosity before any dis-
solution) is defined as €, and the total porosity is thus given
by @, + €. With the dissolution and release of drug from the
matrix, the leached porous region of the matrix grows at the
expense of the undissolved drug/polymer region. For a sys-
tem in which the drug load exceeds the product of the drug’s
water solubility and total porosity of the matrix, a moving
boundary is generated by the dissolution of drug, resulting in
square root time release kinetics. The mathematical solution
of this type of transport problem is well documented (1,5—
8,25); therefore, the detailed steps in the mathematical der-
ivation of the model presented here are not shown. What is
presented here is the formulation of the problem in terms of
percolation concepts.

The physical situation within a polymeric matrix after
partial extraction of drug is represented in Fig. 1. The region
where x < 0 is the stirred aqueous medium. Since convection
dominates the transport process in this region, it is assumed
that there is negligible external mass transfer resistance (the
validity of this assumption is discussed in the experimental
section). The region where 0 < x < &(z) is the region of the
matrix that contains dissolved solute and aqueous medium,
resulting in a water-filled porous zone. It is assumed that the
porous structure in the water-filled porous zone is due to
both the dissolution of the water-soluble solute and the in-
herent porosity of the matrix and that all accessible pores are
wetted. Only the benzoic acid particles accessible to the
outside environment through the connected pore structure
will contribute to transport in the matrix. In other words,
those benzoic acid particles isolated in a sea of poly(vinyl
stearate) will not be able to diffuse through an intercon-
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Fig. 1. Schematic diagram of pseudo-steady-state diffusion problem
for the benzoic acid/poly(vinyl stearate) matrix system.
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nected pore structure and thus cannot contribute to trans-
port. The accessible volume fraction of benzoic acid is de-
fined as @3. The boundary that interfaces the water-filled
porous zone and the undissolved drug/polymer matrix is at
£(#) and is moving with time in the positive x direction. The
region where x > &(f) is the polymer/undissolved drug ma-
trix. In this section of the tablet it is assumed the diffusion
coefficient of the drug is negligibly small since the porosity
attributed to this region is below the percolation threshold.
The critical diffusion step takes place in the water-filled po-
rous zone, where the transport process can be described by
Eq. (12):

To =S =@ = (12)
where C is the concentration of the solute (benzoic acid) in
the water-filled pores, M, is the amount of drug released, S
is the surface area of release, and Q is the amount of benzoic
acid released per unit area of surface exposed to the disso-
lution medium (#£,/S). The solution to this equation in terms
of percolation parameters is given in Eq. (13). The derivation
of this result is similar to that provided by T. Higuchi (5,8)
and is therefore not restated. Modifications were simply
made in terms of percolation concepts.

Q = VDgC20% — (B2 + OCJt

where C, is the saturated solubility of the water-soluble sol-
ute and p is its solid-state density.

A plot of the amount released versus square root time
will therefore be linear, with a slope equal to

slope = SVDRC.[2@% — (@5 + €)C,]

(13)

(14

Therefore, by experimentally determining C, p, €, S, and
03, values of the bulk diffusion coefficient, Dy, can be ob-
tained at various porosities. From the values of Dy and the
experimentally determined value of D,,, percolation param-
eters can be evaluated based on the previously discussed
scaling laws [Egs. (2) and (3)].

MATERIALS AND METHODS

Benzoic acid (99% + gold label purity) and poly(vinyl
stearate) were obtained from Aldrich Chemical Company.
The benzoic acid and poly(vinyl stearate) powders were mi-
cronized by Sturtevant Mill Company. Approximately 1 kg
of benzoic acid was micronized at a feed rate of 2.3 kg/hr in
a 4-in. micronizer lined with polyurethane rubber. Approx-
imately 100 g of poly(vinyl stearate) was micronized at a feed
rate of 6 g/min in a 2-in. micronizer. The particle size distri-
butions of the resulting powders were determined using dot
counting logic (26). Scanning electron micrographs (Jeol
JSM-35C) were taken of samples of the micronized benzoic
acid and poly(vinyl stearate) powders and mean projected
area diameters were determined. The true densities of ben-
zoic acid and poly(vinyl stearate) were determined at room
temperature using helium pycnometry.

The dissolution system used for the diffusion studies
consisted of a six-spindle dissolution apparatus and au-
tosampler (Distek Inc.). A Carver Laboratory press, Model
C, was used to compress the micronized materials into disks
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within dies. Sets of type 316 stainless steel and Hastelloy
alloy G-3 dies were manufactured for the release experi-
ments. It was found that the Hastelloy dies resisted corro-
sion during the diffusion experiments to a much greater de-
gree than the 316 stainless-steel dies. The Hastelloy steel
dies were manufactured with 0.5-mm-deep by 0.5-mm-wide
grooves, spaced 1.5 mm apart within the die to prevent slip-
page of the matrix and to retard any flow of dissolution me-
dium along the sides of the die. The internal radius of each
die was 0.64 cm.

Sample concentrations were determined by high-
performance liquid chromatography (HPLC). The HPLC
system consisted of a Beckman Model 160 UV detector
equipped with a 254-nm filter, a Model 110 pump, a Rheo-
dyne 7120 injection valve (20-pl injection loop), an Altex
Ultrasphere ODS (5 pm, 4.6-mm X 25-cm) column and
matched precolumn, and a Kipp and Zonen BD 40 chart
recorder. The mobile phase used for analytical determina-
tions was composed of 65% methanol, 34% Type II water,
and 1% glacial acetic acid. Quantification of sample concen-
trations was accomplished by comparing peak heights of
samples and standards using an internal standard method
employing 4-fluorobenzoic acid as the internal standard.

The solubility of benzoic acid at 37°C in pH 2.0 buffer
with and without 0.5 mM Aerosol OT was obtained by shak-
ing excess solid in sealed vials for 48 and 96 hr. Aliquots
from the solubility samples were filtered (Gelman 0.45-mm
filter) and then neutralized with high-purity methanol. The
internal standard (4-fluorobenzoic acid) was then added to
the samples prior to their dilution with the mobile phase. The
concentration of benzoic acid in the solubility sample was
subsequently determined using the liquid chromatographic
method described above.

The diffusion coefficient of benzoic acid was deter-
mined using the rotating disk method (27). The experimental
conditions used for the determination of the diffusion coef-
ficient were 37°C, pH 2.0, with and without 0.5 mM Aerosol
OT, and rotational speeds of 50, 100, and 150 rpm.

Benzoic acid/poly(vinyl stearate) matrices were pre-
pared by mixing the two powders and then compressing the
blend in a tablet die. Two types of blending procedures were
used. For one set of experiments, the powders were simply
mixed in porcelain evaporating dishes. In the second set of
experiments the mixing procedure involved screening the
powders through a 20-mesh (841-pum) screen, blending the
screened powders in a sealed vial, screening the blend
through a 20-mesh screen, and finally, blending the mixture
a second time. It was determined that the second mixing
procedure resulted in more reproducible release profiles.
Approximately 500 mg of each blend was accurately trans-
ferred to separate tablet dies (type 316 dies for the first set of
experiments and Hastelloy dies for the second set) and com-
pressed at 10 kKN on the Carver press. Volumes of the ma-
trices were calculated from the physical dimensions of each
of the compressed disks.

Release experiments were carried out in a Distek 2000
dissolution apparatus with autosampler (Distek Inc., Somer-
set, NJ) at 37°C in pH 2.0 HCI acid buffer, containing the
internal standard (4-fluorobenzoic acid) and 0.25 to 0.5 mM
Aerosol OT [below the critical micelle concentration (28)].
The medium was degassed by heating to 50°C. The benzoic
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acid/poly(vinyl stearate) matrices, compressed within the
steel dies, were rotated at 100 rpm.

By using the analysis of Levich (29) concerning mass
transfer to a rotating disk, and combining this result with the
work of Paul and McSpadden (6) concerning the effect of
external mass transfer resistance, it was determined that the
external mass transfer resistance at the disk interface is neg-
ligibly small under the experimental conditions utilized.

Samples were withdrawn at specified time points and
analyzed using the internal standard method described pre-
viously. After withdrawal of each sample, the volume of the
withdrawn solution was replaced with fresh dissolution me-
dium.

RESULTS

One of the crucial experimental goals of this work was
to match the particle size of the hydrophobic polymer with
that of the water-soluble solute in order to generate a simple
heterogeneous structure. Both the poly(vinyl stearate) and
the benzoic acid powders were micronized and the particle
size distributions were determined from electron micro-
graphs using dot counting logic. The resulting statistical es-
timates, listed in Table I, illustrate the fact that the two
materials are of comparable particle sizes. Densities were
determined by helium pycnometry and the values for ben-
zoic acid and poly(vinyl stearate) are also listed in Table 1.
The volume fraction of space occupied by benzoic acid and
the pore space intrinsic to the undissolved matrix were cal-
culated using the density values listed in Table I, the weight
fractions of poly(vinyl stearate) and benzoic acid incorpo-
rated in each matrix, and the volume of each matrix. It was
found that the porosity intrinsic to the undissolved matrix
was 0.021 = 0.007 (90% confidence) based on the evaluation
of 12 matrices over a wide range of benzoic acid loadings.
From these experimental results, the intrinsic porosity of the
matrix was taken to be 0.02. The volume fraction of benzoic
acid for each matrix evaluated is listed in Table II.

The solubility and aqueous diffusion coefficient of ben-
zoic acid in pH 2.0 buffer are the important experimental
solution properties required for the predictive application of
Eq. (13). The aqueous solubility of benzoic acid at pH 2.0
and 37°C was determined with various concentrations of
Aerosol OT (0.00, 0.25, 0.50, and 0.75 mM). No significant
differences in solubility were observed among the solutions.
The solubility of benzoic acid was determined to be 4.6 = 0.1
mg/ml based on 22 experimental determinations.

The diffusion coefficient of benzoic acid in pH 2.0 aque-

Table I. Mean Projected Particle Diameter with 95% Confidence
Limits? and Densities of Micronized Benzoic Acid and
Poly(Vinyl Stearate)

Mean projected

area diameter Density

Component (pm) (g/em’)
poly(vinyl stearate) 10.3 £ 0.2 0.979
benzoic acid 12 =4 1.266

? Confidence limits are calculated based on the standard error of the
mean.
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Table II. Experimental Volume Fraction Accessible and Relative
Diffusivity Values Determined as a Function of Drug Load

Dy x 10°
Dy @2 (cm?/sec) D
0.16 0.16 0.49 0.038
0.21 0.21 0.75 0.058
0.24 0.24 1.16 0.090
0.26 1.14 0.089
0.29 0.28 1.77 0.14
0.30 1.70 0.13
0.33 0.34 2.13 0.17
0.35 2.97 0.23
0.37 0.38 3.20 0.25
0.38 3.49 0.27
0.42 0.42 4.26 0.33
0.46 5.03 0.39
0.47 0.47 5.03 0.39
0.50 6.19 0.48

ous solution (with and without 0.50 mM Aerosol OT) at 37°C
was determined using the rotating disk method. Diffusion
experiments were run at 50, 100, and 150 rpm and the re-
sulting flux data were evaluated using the relationship pub-
lished by Newman (30) [Eq. (15)]. The analysis was done
using Newman’s work because it provides a somewhat more
accurate estimate than the conventionally used solution de-
veloped by Levich for the rotating disk. Using the experi-
mental results of the rotating disk experiment the aqueous
diffusion coefficient of benzoic acid was determined by nu-
merically solving Eq. (15):

. 0.6205 CsSc?? (wv)!?
T 14 0.298 Sc™1? + 0.14514 S¢™23

(15)

where w is the rotation speed as radians per second, v is the
kinematic viscosity, and Sc is the Schmidt number (v/D,).
There were no significant differences found in diffusion co-
efficients determined in solutions with or without Aerosol
OT. The experimental value of D, was found to be 1.29 *
0.05 x 10~° cm®/sec, as determined from six independent
experiments. The experimental value of the aqueous diffu-
sion coefficient of benzoic acid in water determined from the
rotating disk experiment agreed within 5% of predicted co-
efficients using the correlations of Wilke (31) and Wilke and
Chang (32).

One of the powerful predictions that percolation theory
makes is that the relationship between porosity and the bulk
diffusion coefficient is described by the simple scaling law
shown in Eq. (2). In order to test this scaling law, benzoic
acid release profiles were experimentally determined for a
range of benzoic acid loads (@, values ranging from 0.16 to
0.50). Figure 2 shows typical release profiles of benzoic acid
versus square root time for three different matrix porosities.
The data are plotted against the square root of time accord-
ing to Eq. (13). The plateau region shown in Fig. 2 corre-
sponds to complete extraction.

The percolation parameters, @5 and the relative diffu-
sivity, were calculated from the plateau region and the slope
of the releasing region, respectively. The relative diffusivity
(D) was determined by fitting the release data to Eq. (13),
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Fig. 2. Grams of benzoic acid released from poly(vinyl stearate)
matrix system for various initial loadings (30, 35, and 40% benzoic
acid by weight).

where C, and D, are independently determined constants.
The values of D and (3 determined in this manner are listed
in Table II. From the data in Table II it is clearly seen that
essentially all the benzoic acid incorporated in the matrices
was eventually released over the concentration range tested.

DISCUSSION

The evaluation of the results in Table II begins logically
with a comparison of experimental results with theoretical
calculations, based on percolation theory, for simple three-
dimensional lattices. Theoretical estimates of the relative
diffusivity and volume fraction accessible have been deter-
mined using simulation techniques for a wide range of simple
lattices. The calculation of the volume fraction accessible for
simple lattices (simple cubic, body-centered cubic, and face-
centered cubic) has been accomplished by Dean and Bird
(33) using Monte Carlo techniques. A comparison of our
experimental values of &%, where it is assumed @* = @2 +
€, with the theoretical profiles determined by Dean and Bird
is shown in Fig. 3. It is quite clear that the volume fraction
accessible of the experimental matrix is significantly larger
than that predicted for simple lattices at low porosities.

The relative diffusivity for theoretical lattices has been
studied by several researchers. Winterfeld (34) has deter-
mined the ‘‘volume fraction effective’ (equivalent to our
terminology of relative diffusivity) as a function of the vol-
ume fraction conducting for tetrakaidecahedral (14 nearest
neighbors) and Voronoi (15.54 average neighboring sites)
tessellations (site percolation) using two different techniques
(resistor network approximation and finite element approx-
imation). The transport properties of the simple cubic lattice
have been determined by Kirkpatrick (21) and the results of
both groups are shown in comparison with our experimental
relative diffusivity results in Fig. 4.

These comparisons indicate that both the relative diffu-
sivity and the J* of our experimental system are significantly
larger than can be explained by simple lattices. By fitting the
relative diffusivity data in Table II to the scaling law shown
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Fig. 3. Experimental ()* values plotted against porosity. Theoretical
curves of @* (taken from Ref. 33) for the simple cubic (z = 6),
body-centered cubic (z = 8), and face-centered cubic (z = 12) lat-
tices shown for comparison.

in Eq. (2), the percolation threshold was determined using
nonlinear multiple regression. Because the parameter p in
Eq. (2) is assumed to be universal, the fitting of the experi-
mental data to the scaling law was greatly simplified by treat-
ing p as a known constant. Pandey et al. (35) have deter-
mined from careful Monte Carlo studies of cubic lattices that
nis 2.0 = 0.2, whereas Harris (17) has estimated w to be 1.85
*+ 0.15 from an extensive literature survey. For our analysis
we assume a value 2.0 for p, which is consistent with the
literature. The relative diffusivity data in Table II were fit
using nonlinear regression (SYSTAT, Inc., Evanston, IL) to
Eq. (16):

D = m@ - @.)*°

where m is a proportionality constant. The value of m was
determined to be 2.3 (standard error of 0.1) and the estimate
of @, was found to be 0.07 (standard error of 0.01). The

(16)
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Fig. 4. Experimental D values plotted against porosity. Theoretical
curves of D for the simple cubic (z = 6) (21), tetrakaidecahedral (z
= 14) (34), and Voronoi (z = 15.5) (34) lattices shown for compar-
ison.
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excellent fit of experimental data to Eq. (16) is shown in
Fig. 5.

The low experimental percolation threshold is difficult
to explain in terms of conventional three-dimensional lat-
tices, and thus, an alternative hypothesis concerning pore
structure was tested. It was proposed that osmotic pressure
gradients might alter pore structure by creating and connect-
ing additional pore spaces for diffusion. If additional pore
spaces were formed via this mechanism, a significantly
lower percolation threshold would be observed experimen-
tally. To test this hypothesis, release experiments were per-
formed in media (adjusted with KCI) which were isosmotic
with a saturated solution of benzoic acid. Thus, release rates
were determined for matrices run in osmotically matched
media and these rates were compared to release rates of
benzoic acid in media that were not osmotically matched.
The slopes for the amount of solute released versus square
root of time for the two different sets of release experiments
are shown in Table III. Clearly there is no significant differ-
ence in the rates of release at low porosities for matrices run
in osmotically matched and unmatched media. We therefore
infer that osmotic pressure effects are not the cause of the
experimentally observed low percolation threshold and that
an alternative explanation must be found.

Surface release of benzoic acid from the matrices could
also be a contributing error in the evaluation of @_. How-
ever, since the square root time release kinetics were con-
stant over the entire time scale investigated, the mechanism
of release occurring throughout this time course must be
unvarying. This observation therefore supports the conclu-
sion that surface release does not significantly contribute to
the value obtained for the percolation threshold of this sys-
tem.

The coordination number of a site (the number of near-
est neighbors) in a three-dimensional lattice is a key concept
relating the effect of pore structure to the percolation thresh-
old. For example, a simple cubic lattice has six nearest
neighbors and a percolation threshold of 0.312 (36), while a
face centered cubic lattice has a coordination number of 12
and a percolation threshold of 0.20 for site percolation (37).
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0.0 0.1 0.2 0.3 0.4 0.5 0.6
Porosity

Fig. 5. Scaling law [Eq. (16)] fit to experimental values of D. Ex-
perimental critical percolation threshold was determined to be 0.07
+ 0.02.
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Table III. Comparison of Benzoic Acid Release Rates into Osmot-
ically Matched and Unmatched Buffer Solutions?

Slope of mass released versus
square root time
(g sec™'? x 109

Drug load Unmatched solution Isosmotic solution
By (pH 2 buffer) (pH 2 buffer + KCI)
0.21 5.5 0.1 5.6 0.1
0.26 7.6 0.5 7.5+0.2
0.30 9.9 =07 9.8 0.2
0.38 16 =1 12.7 = 0.3

¢ The buffer solution is considered matched if it is isosmotic with a
saturated solution of benzoic acid.

This illustrates that the larger the coordination number of the
lattice, the smaller the percolation threshold. Figure 6 is a
plot of the percolation threshold as a function of porosity for
several three-dimensional lattices. In order to estimate the
number of nearest neighbors corresponding to the experi-
mental percolation threshold, the data in Fig. 6 were fitted to
the empirical expression shown in Equation (17), where o is
a fitted coefficient and z is the coordination number.

_ 1
"1+ o0z

Dc an

The value of ¢ was determined to be 0.356 (standard error of
0.005). Solving for the coordination number corresponding
to a percolation threshold of 0.07, it was determined that z =
37 for the experimental system studied here. Thirty-seven is
alarge number in comparison with the coordination numbers
of the cubic, tetrakaidecahedron, and Voronoi lattices. This
finding of a large coordination number is indicative of a com-
plex shape of a typical site within the benzoic acid/poly(vinyl
stearate) matrix investigated.

The large experimental coordination number could in-
dicate that the benzoic acid particles are not randomly mixed
on the microscopic scale. The present evidence for this hy-
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Fig. 6. Critical percolation threshold plotted against coordination
number for a wide range of theoretical lattices (data taken from
Refs. 33, 36, and 37). Fitted curve from Equation (17).
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pothesis consists of the observed percolation threshold and
the sensitivity of release rates to the experimental mixing
procedure. If the local positions of benzoic acid particles are
affected by the presence or absence of other benzoic acid
particles, a nonrandom distribution of particles and pores
will result.

An example of the effect of a nonrandom distribution of
conducting sites on the percolation threshold comes from the
thermal transport literature. There is evidence in the litera-
ture of structures with very low percolation thresholds
(38,39). These structures with very low percolation thresh-
olds tend to be ordered, in that the microscopic arrangement
of the particles is not random, even though the system is well
mixed. For example, aluminum oxide fleece shows a perco-
lation threshold of approximately 3% and aerogels exhibit
similarly low percolation thresholds. Both materials (alumi-
num oxide fleece and aerogels) show network structures.
The reason for such low threshold values in fleece and aero-
gels is that the sites are not randomly dispersed; instead they
are ordered on the microscopic level. This structural orga-
nization leads to sample-spanning clusters at very low den-
sities of conducting sites.

Analysis to date has been based on the assumption that
diffusion occurs only through the porous network produced
by the intrinsic porosity and the dissolution of the benzoic
acid particles. If diffusion was taking place directly through
the poly(vinyl stearate) polymer, a very low percolation
threshold and consequently high coordination would be ob-
served. Low molecular weight chains of the polymer and the
presence of amorphous regions within the polymer structure
would facilitate diffusion through the polymer chains and
possibly explain the current experimental observations. The
micronization procedure could reduce the percentage crys-
tallinity of the polymer and therefore impart a more amor-
phous nature to the polymer. Water uptake within these
amorphous regions would serve to greatly enhance the trans-
port of benzoic acid through the matrix.

The percolation models described here are site models
and the experimental evidence presented in this analysis
would indicate that the average site within the matrix must
have a large number of nearest neighbors. It is interesting to
note that a bond model of the Voronoi tessellation gives a
percolation threshold of 0.082 (24), which is also not statis-
tically different from the experimentally determined perco-
lation threshold. Thus, the bond percolation threshold for
the Voronoi tessellation is very close to the experimentally
observed percolation threshold.

We hypothesize that the low percolation threshold eval-
uated for our system is due to either one or both of the
following explanations: (i) the benzoic acid particles may not
be randomly dispersed on a microscopic scale but, rather,
form ordered clusters large enough to span the matrix even
at low concentrations; or (ii) benzoic acid is diffusing di-
rectly through the poly(vinyl stearate) due to low molecular
weight polymer chains or a low degree of crystallinity. Fu-
ture research will focus on the elucidation of the physical
structure of the porous matrix and the existence of network
structures, characterization of the physical properties of the
polymer, and evaluation of transport properties through the
polymer.
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